Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38607363

RESUMO

Poly methyl methacrylate (PMMA) bone cement is widely used in orthopedic surgeries, including total hip/knee arthroplasty and vertebral compression fracture treatment. However, loosening due to bone resorption is a common mid-to-late complication. Therefore, developing bioactive bone cement that promotes bone growth and integration is key to reducing aseptic loosening. In this study, we developed a piezoelectric bone cement comprising PMMA and BaTiO3 with excellent electrobioactivity and further analyzed its ability to promote bone integration. Experiments demonstrate that the PMMA and 15 wt % BaTiO3 cement generated an open-circuit voltage of 37.109 V under biomimetic mechanical stress, which effectively promoted bone regeneration and interfacial bone integration. In vitro experiments showed that the protein expression levels of ALP and RUNX-2 in the 0.65 Hz and 20 min group increased by 1.74 times and 2.31 times. In vivo experiments confirmed the osteogenic ability of PMMA and 15 wt % BaTiO3, with the increment of bone growth in the non-movement and movement groups being 4.67 and 4.64 times, respectively, at the second month after surgery. Additionally, Fluo-4 AM fluorescence staining and protein blotting experiments verified that PMMA and 15 wt % BaTiO3 electrical stimulation promoted osteogenic differentiation of BMSCs by activating calcium-sensitive receptors and increasing calcium ion inflow by 1.41 times when the stimulation reached 30 min. Therefore, piezoelectric bioactive PMMA and 15 wt % BaTiO3 cement has excellent application value in orthopedic surgery systems where stress transmission is prevalent.

2.
Angew Chem Int Ed Engl ; 63(15): e202400086, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329002

RESUMO

Fluorine side chain functionalization of non-fullerene acceptors (NFAs) represents an effective strategy for enhancing the performance of organic solar cells (OSCs). However, a knowledge gap persists regarding the relationship between structural changes induced by fluorine functionalization and the resultant impact on device performance. In this work, varying amounts of fluorine atoms were introduced into the outer side chains of Y-series NFAs to construct two acceptors named BTP-F0 and BTP-F5. Theoretical and experimental investigations reveal that side-chain fluorination significantly increase the overall average electrostatic potential (ESP) and charge balance factor, thereby effectively improving the ESP-induced intermolecular electrostatic interaction, and thus precisely tuning the molecular packing and bulk-heterojunction morphology. Therefore, the BTP-F5-based OSC exhibited enhanced crystallinity, domain purity, reduced domain spacing, and optimized phase distribution in the vertical direction. This facilitates exciton diffusion, suppresses charge recombination, and improves charge extraction. Consequently, the promising power conversion efficiency (PCE) of 17.3 % and 19.2 % were achieved in BTP-F5-based binary and ternary devices, respectively, surpassing the PCE of 16.1 % for BTP-F0-based OSCs. This work establishes a structure-performance relationship and demonstrates that fluorine functionalization of the outer side chains of Y-series NFAs is a compelling strategy for achieving ideal phase separation for highly efficient OSCs.

3.
Quant Imaging Med Surg ; 14(1): 909-919, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223107

RESUMO

Background: The rarity of metaplastic breast carcinoma (MBC) has resulted in limited sonographic data. Given the inferior prognosis of MBC compared to invasive ductal carcinoma (IDC), accurate preoperative differentiation between the two is imperative for effective treatment planning and prognostic prediction. The objective of this study was to assess the diagnostic accuracy of MBC and differentiate it from IDC by analyzing sonographic and clinicopathologic features. Methods: In this retrospective cohort study, 197 women comprising 200 IDC lesions were enrolled between January 2012 and December 2021 and 20 women comprising 20 pure MBC lesions were enrolled between January 2019 and December 2019. A comparison was made between the sonographic and clinicopathologic characteristics of MBC and IDC. Results: The results indicated that patients with MBC had a higher proportion of tumor grade 3 (95.0% vs. 32.5%; P<0.001), high Ki-67 expression (100.0% vs. 75.0%; P<0.001), and the triple-negative subtype (90.0% vs. 13.0%; P<0.001) as compared to those with IDC. On ultrasound (US) findings, MBC lesions tended to have a larger size (≥5 cm: 45.0% vs. 1.5%; P<0.001), regular shape (45.0% vs. 1.5%, P<0.001), circumscribed margin (40.0% vs. 0.5%, P<0.001), a complex cystic and solid echo pattern (50.0% vs. 3.5%; P<0.001), and posterior acoustic enhancement (95.0% vs. 14.5%; P<0.001). Additionally, MBC was more likely to be misinterpreted as a benign lesion by sonographers than was IDC (30.0% vs. 4.5%; P<0.001). Multilayer perceptron analysis revealed posterior acoustic enhancement, circumscribed margins, and size as distinguishing factors between these two tumor types. The estimated rates of local recurrence, distant metastasis, and 5-year overall survival in 19 cases with MBC were found to be 10.5%, 31.6%, and 65.0%, respectively. Conclusions: MBC typically presents as a large breast mass with more benign US features in older women, findings which may facilitate its accurate diagnosis and differentiation from other breast masses.

4.
Chem Sci ; 15(3): 1123-1131, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239697

RESUMO

Exploring economical, efficient, and stable electrocatalysts for the seawater hydrogen evolution reaction (HER) is highly desirable but is challenging. In this study, a Mo cation doped Ni0.85Se/MoSe2 heterostructural electrocatalyst, Mox-Ni0.85Se/MoSe2, was successfully prepared by simultaneously doping Mo cations into the Ni0.85Se lattice (Mox-Ni0.85Se) and growing atomic MoSe2 nanosheets epitaxially at the edge of the Mox-Ni0.85Se. Such an Mox-Ni0.85Se/MoSe2 catalyst requires only 110 mV to drive current densities of 10 mA cm-2 in alkaline simulated seawater, and shows almost no obvious degradation after 80 h at 20 mA cm-2. The experimental results, combined with the density functional theory calculations, reveal that the Mox-Ni0.85Se/MoSe2 heterostructure will generate an interfacial electric field to facilitate the electron transfer, thus reducing the water dissociation barrier. Significantly, the heteroatomic Mo-doping in the Ni0.85Se can regulate the local electronic configuration of the Mox-Ni0.85Se/MoSe2 heterostructure catalyst by altering the coordination environment and orbital hybridization, thereby weakening the bonding interaction between the Cl and Se/Mo. This synergistic effect for the Mox-Ni0.85Se/MoSe2 heterostructure will simultaneously enhance the catalytic activity and durability, without poisoning or corrosion of the chloride ions.

5.
Langmuir ; 39(50): 18631-18643, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38064293

RESUMO

The rapid industrial development has contributed to worsening global pollution, necessitating the urgent development of highly sensitive, cost-effective, and portable gas sensors. In this work, the adsorption of CO, CO2, H2S, NH3, NO, NO2, O2, and SO2 gas molecules on pristine and Cu- and Al-decorated monolayer TiSe2 has been investigated based on first-principles calculations. First, the results of the phonon spectrum and ab initio molecular dynamics simulations demonstrated that TiSe2 is dynamically stable. In addition, compared to pristine TiSe2 (-0.029 to -0.154 eV), the adsorption energy of gas molecules (excluding CO2) significantly decreased after decorated with Cu or Al (-0.212 to -0.977 eV in Cu-decorated TiSe2, -0.438 to -2.896 eV in Al-decorated TiSe2). Among them, NH3 and NO2 have the lowest adsorption energies in Cu and Al-decorated TiSe2, respectively. Further research has shown that the decrease in adsorption energy of gas molecules is mainly due to orbital hybridization and charge transfer between decorated Cu and Al atoms and gas molecules. These findings suggest that TiSe2 decorated with Cu and Al can effectively improve its sensitivity to NH3 and NO2, respectively, making it promising in gas sensing applications.

6.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095203

RESUMO

Coarse-graining of fluids is challenging because fluid particles are unbound and diffuse long distances in time. One approach creates coarse-grain variables that group all particles within a region centered on specific points in space and accounts for the movement of particles among such regions. In our previous work, we showed that in many cases, potential interactions for such a scheme adopted a generalized quadratic form, whose parameters depend on means, variances, and correlation coefficients among the coarse-grain variables. In this work, we use statistical mechanics to derive analytic expressions for these parameters, using properties of the fluid, including pair distribution functions. These expressions are compared against simulation-derived values and shown to be in good agreement. This approach can be used to calculate a priori the potential for any homogeneous, simple fluid, without the need for fitting procedures or matching, thus increasing the ease of use of this coarse-grain scheme and creating a foundation for large-scale bottom-up simulations. Furthermore, these expressions provide a quantitative way of studying the boundary between discrete (atomic) and continuum models of fluids.

7.
Nat Commun ; 14(1): 6964, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907534

RESUMO

High-efficiency organic solar cells are often achieved using toxic halogenated solvents and additives that are constrained in organic solar cells industry. Therefore, it is important to develop materials or processing methods that enabled highly efficient organic solar cells processed by halogen free solvents. In this paper, we report an innovative processing method named auxiliary sequential deposition that enables 19%-efficiency organic solar cells processed by halogen free solvents. Our auxiliary sequential deposition method is different from the conventional blend casting or sequential deposition methods in that it involves an additional casting of dithieno[3,2-b:2',3'-d]thiophene between the sequential depositions of the donor (D18-Cl) and acceptor (L8-BO) layers. The auxiliary sequential deposition method enables dramatic performance enhancement from 15% to over 18% compared to the blend casting and sequential deposition methods. Furthermore, by incorporating a branched-chain-engineered acceptor called L8-BO-X, device performance can be boosted to over 19% due to increased intermolecular packing, representing top-tier values for green-solvent processed organic solar cells. Comprehensive morphological and time-resolved characterizations reveal that the superior blend morphology achieved through the auxiliary sequential deposition method promotes charge generation while simultaneously suppressing charge recombination. This research underscores the potential of the auxiliary sequential deposition method for fabricating highly efficient organic solar cells using environmentally friendly solvents.

8.
Heliyon ; 9(10): e20701, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37860569

RESUMO

To promote the development of the renewable energy (RE) industry, China officially implemented renewable portfolio standard (RPS) in 2020, the policy effect of which is closely related to the amount of renewable power offered to users by power-selling enterprises. We use evolutionary game theory to analyze the behavioral strategies of regional governments, regulatory authorities, and power-selling enterprises under RPS, and build a system dynamics (SD) model to determine the influence of the relevant parameters on stakeholders' strategy making considering quota heterogeneity. The results show that: (1) enterprises evolve to being stable earlier in high-quota area than in low-quota area, which infers that RE development has a certain bottleneck in the initial stage and that RPS can play an effective role; (2) a high certificate price can not only help power selling companies evolve to being stable, but also promote the withdrawal of governments subsidies; (3) to increase the proportion of renewable electricity, the net profit of RE power should not be lower than that of conventional energy; and (4) the incentive effect of subsidy income is not stronger than that of resale income, while when compared with penalty, the incentive effect is stronger, and penalty is not more severe and actually better. Importantly, the results provide policy suggestions for the development of RPS.

9.
EBioMedicine ; 97: 104845, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890369

RESUMO

BACKGROUND: Transient ischemic attack (TIA) induces ischemic tolerance that can reduce the subsequent ischemic damage and improve prognosis of patients with stroke. However, the underlying mechanisms remain elusive. Recent advances in plasma metabolomics analysis have made it a powerful tool to investigate human pathophysiological phenotypes and mechanisms of diseases. In this study, we aimed to identify the bioactive metabolites from the plasma of patients with TIA for determination of their prophylactic and therapeutic effects on protection against cerebral ischemic stroke, and the mechanism of TIA-induced ischemic tolerance against subsequent stroke. METHODS: Metabolomic profiling using liquid chromatography-mass spectrometry was performed to identify the TIA-induced differential bioactive metabolites in the plasma samples of 20 patients at day 1 (time for basal metabolites) and day 7 (time for established chronic ischemic tolerance-associated metabolites) after onset of TIA. Mouse middle cerebral artery occlusion (MCAO)-induced stroke model was used to verify their prophylactic and therapeutic potentials. Transcriptomics changes in circulating neutrophils of patients with TIA were determined by RNA-sequencing. Multivariate statistics and integrative analysis of metabolomics and transcriptomics were performed to elucidate the potential mechanism of TIA-induced ischemic tolerance. FINDINGS: Plasma metabolomics analysis identified five differentially upregulated metabolites associated with potentially TIA-induced ischemic tolerance, namely all-trans 13,14 dihydroretinol (atDR), 20-carboxyleukotriene B4, prostaglandin B2, cortisol and 9-KODE. They were associated with the metabolic pathways of retinol, arachidonic acid, and neuroactive ligand-receptor interaction. Prophylactic treatment of MCAO mice with these five metabolites significantly improved neurological functions. Additionally, post-stroke treatment with atDR or 9-KODE significantly reduced the cerebral infarct size and enhanced sensorimotor functions, demonstrating the therapeutic potential of these bioactive metabolites. Mechanistically, we found in patients with TIA that these metabolites were positively correlated with circulating neutrophil counts. Integrative analysis of plasma metabolomics and neutrophil transcriptomics further revealed that TIA-induced metabolites are significantly correlated with specific gene expression in circulating neutrophils which showed prominent enrichment in FoxO signaling pathway and upregulation of the anti-inflammatory cytokine IL-10. Finally, we demonstrated that the protective effect of atDR-pretreatment on MCAO mice was abolished when circulating neutrophils were depleted. INTERPRETATION: TIA-induced potential ischemic tolerance is associated with upregulation of plasma bioactive metabolites which can protect against cerebral ischemic damage and improve neurological functions through a positive role of circulating neutrophils. FUNDING: National Natural Science Foundation of China (81974210), Science and Technology Planning Project of Guangdong Province, China (2020A0505100045), Natural Science Foundation of Guangdong Province (2019A1515010671), Science and Technology Program of Guangzhou, China (2023A03J0577), and Natural Science Foundation of Jiangxi, China(20224BAB216043).


Assuntos
Ataque Isquêmico Transitório , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/metabolismo , Neutrófilos/metabolismo , Acidente Vascular Cerebral/complicações , Infarto da Artéria Cerebral Média/metabolismo , Metabolômica
10.
Respir Med ; 218: 107397, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37640274

RESUMO

RATIONALE: Alternatives to center-based pulmonary rehabilitation are needed to improve patient access to this important therapy. A critical challenge to overcome is how to maximize safety of unsupervised exercise for at-risk patients. We investigated if a novel remote monitoring-enabled mobile health (mHealth) program is safe, feasible, and effective for patients who experience exercise-induced hemoglobin desaturation. METHODS: An interstitial lung disease (ILD) commonly associated with pronounced exercise desaturation was investigated - the rare, female-predominant ILD lymphangioleiomyomatosis (LAM). Over a 12-week program, hemoglobin saturation (SpO2) was continuously recorded during all home exercise sessions. Intervention effects were assessed with 6-min walk test (6MWT), maximal cardiopulmonary exercise test (CPET), lower extremity computerized dynamometry, pulmonary function tests, and health-related quality of life (QoL) surveys. Safety was assessed by blood biomarkers of systemic inflammation and cardiac wall stress, and incidence of adverse events. RESULTS: Fifteen LAM patients enrolled and 14 completed the intervention, with high adherence to aerobic (87 ± 15%) and strength (87 ± 12%) training components. An innovative characterization of exercise training SpO2 revealed that while mild-to-moderate desaturation was common during home workouts, participants were able to self-adjust exercise intensity and supplemental oxygen levels to maintain recommended exercise parameters. Significant improvements included 6MWT distance (+36 ± 34 m, p = 0.003), CPET time (p = 0.04), muscular endurance (p = 0.008), QoL (p = 0.009 to 0.03), and fatigue (p = 0.001 to 0.03). Patient acceptability and satisfaction indicators were high, blood biomarkers remained stable (p > 0.05), and no study-related adverse events occurred. CONCLUSION: A remote monitoring-enabled home exercise program is a safe, feasible, and effective approach even for patients who experience exercise desaturation.


Assuntos
Doenças Pulmonares Intersticiais , Qualidade de Vida , Humanos , Feminino , Teste de Esforço , Terapia por Exercício/efeitos adversos , Tolerância ao Exercício , Biomarcadores , Hemoglobinas , Prescrições
11.
Dalton Trans ; 52(7): 2062-2072, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36692198

RESUMO

It is urgent to develop high-performance anode materials for lithium-ion batteries. In this work, a C3N/C3B p-n heterostructure was systematically investigated by first-principles calculations. The bonding strength of Li in C3N is relatively low (-0.53 eV), whereas the C3N/C3B heterostructure (-1.64 eV to -2.84 eV) can greatly improve the bonding strength without compromising the Li migration capability. The good bonding strength and Li mobility in the C3N/C3B heterostructure are mainly caused by the synergy effect and internal electric field of the p-n heterostructure. Moreover, the electronic structures indicate that the C3N/C3B heterostructure has good conductivity with a tiny bandgap of 0.09 eV. Compared to pristine C3N, the stiffness of the C3N/C3B heterostructure improved significantly (549.35 N m-1). Besides, the C3N/C3B heterostructure presents a high lithium-ion storage capacity (986.61 mA h g-1). The ultrahigh stiffness, good conductivities of electrons and ions, high bonding strength of Li, and high capacity show that the C3N/C3B heterostructure is a prospective anode material for lithium-ion batteries.

12.
ACS Appl Mater Interfaces ; 15(3): 4724-4732, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629832

RESUMO

Two-dimensional materials (2DMs) that are stacked vertically with a certain twist angle provide new degrees of freedom for designing novel physical properties. Twist-related properties of homogeneous bilayer and heterogeneous bilayer 2DMs, such as excitons and phonons, have been described in many pioneering works. However, twist-related properties of homogeneous trilayer 2DMs have been rarely reported. In this work, trilayer MoS2 with the twisted angle of 12° by optimized vapor deposition rather than the conventional mechanical stacking method was successfully fabricated. The inversion symmetry of trilayer MoS2 is changed by twist. Phonons and excitons produced by twist have an enormous influence on the interlayer interaction of trilayer MoS2, making trilayer MoS2 appear to have exotic optical properties. Compared with monolayer MoS2, the phonon vibration and photoluminescence intensity of trilayer MoS2 with one-interlayer-twisted are significantly improved, and the second harmonic generation response in the non-twist region of trilayer MoS2 is ∼3 times that of monolayer MoS2. In addition, interlayer coupling, inversion symmetry, and exciton behavior of the twist region show regional differences. This work provides a new way for designing twist and exploring the influence of twist on the structures of 2DMs with few layers.

13.
Front Oncol ; 12: 939418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465352

RESUMO

Objective: We aim to leverage deep learning to develop a computer aided diagnosis (CAD) system toward helping radiologists in the diagnosis of follicular thyroid carcinoma (FTC) on thyroid ultrasonography. Methods: A dataset of 1159 images, consisting of 351 images from 138 FTC patients and 808 images from 274 benign follicular-pattern nodule patients, was divided into a balanced and unbalanced dataset, and used to train and test the CAD system based on a transfer learning of a residual network. Six radiologists participated in the experiments to verify whether and how much the proposed CAD system helps to improve their performance. Results: On the balanced dataset, the CAD system achieved 0.892 of area under the ROC (AUC). The accuracy, recall, precision, and F1-score of the CAD method were 84.66%, 84.66%, 84.77%, 84.65%, while those of the junior and senior radiologists were 56.82%, 56.82%, 56.95%, 56.62% and 64.20%, 64.20%, 64.35%, 64.11% respectively. With the help of CAD, the metrics of the junior and senior radiologists improved to 62.81%, 62.81%, 62.85%, 62.79% and 73.86%, 73.86%, 74.00%, 73.83%. The results almost repeated on the unbalanced dataset. The results show the proposed CAD approach can not only achieve better performance than radiologists, but also significantly improve the radiologists' diagnosis of FTC. Conclusions: The performances of the CAD system indicate it is a reliable reference for preoperative diagnosis of FTC, and might assist the development of a fast, accessible screening method for FTC.

14.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499075

RESUMO

Soil cadmium (Cd) contamination seriously reduces the production and product quality of Tartary buckwheat (Fagopyrum tataricum), and strategies are urgently needed to mitigate these adverse influences. Herein, we investigated the effect of salicylic acid (SA) on Tartary buckwheat seedlings grown in Cd-contaminated soil in terms of Cd tolerance and accumulation. The results showed that 75-100 µmol L-1 SA treatment enhanced the Cd tolerance of Tartary buckwheat, as reflected by the significant increase in plant height and root and shoot biomass, as well as largely mitigated oxidative stress. Moreover, 100 µmol L-1 SA considerably reduced the stem and leaf Cd concentration by 60% and 47%, respectively, which is a consequence of increased root biomass and root Cd retention with promoted Cd partitioning into cell wall and immobile chemical forms. Transcriptome analysis also revealed the upregulation of the genes responsible for cell wall biosynthesis and antioxidative activities in roots, especially secondary cell wall synthesis. The present study determines that 100 µmol L-1 is the best SA concentration for reducing Cd accumulation and toxicity in Tartary buckwheat and indicates the important role of root in Cd stress in this species.


Assuntos
Fagopyrum , Fagopyrum/genética , Cádmio/toxicidade , Plântula , Ácido Salicílico/farmacologia , Estresse Oxidativo
15.
Dalton Trans ; 51(46): 17902-17910, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36367056

RESUMO

In recent years, two-dimensional (2D) C-based materials have been intensively studied due to their excellent physicochemical properties. Meanwhile, extensive research has revealed that the electrical properties of layered materials can be tuned by changing the stacking pattern. However, the tuning of ion diffusion properties through stacking remains to be explored. In this work, bilayer C3B with different stackings as a lithium-ion battery anode material is systematically investigated by first-principles calculations. The calculated results show that bilayer C3B has better electronic properties (with a band gap of 0.44 eV to 0.54 eV) and enhanced bonding strength of Li (-2.82 to -3.27 eV) compared to monolayer C3B. Moreover, the intralayer migration barrier of Li can be regulated by stacking. Interestingly, the AB stacked configuration has the lowest migration barrier of 0.100 eV, which is significantly lower than those of other stacking configurations and monolayer C3B. Further studies revealed that the formation of fast ion diffusion channels in the AB stacked configuration is due to the combined effect of layer distance and in-plane charge transfer. These results offer a new strategy for the regulation of ion diffusion properties in 2D van der Waals materials.

16.
Angew Chem Int Ed Engl ; 61(46): e202206930, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36125387

RESUMO

Central π-core engineering of non-fullerene small molecule acceptors (NF-SMAs) is effective in boosting the performance of organic solar cells (OSCs). Especially, selenium (Se) functionalization of NF-SMAs is considered a promising strategy but the structure-performance relationship remains unclear. Here, we synthesize two isomeric alkylphenyl-substituted selenopheno[3,2-b]thiophene-based NF-SMAs named mPh4F-TS and mPh4F-ST with different substitution positions, and contrast them with the thieno[3,2-b]thiophene-based analogue, mPh4F-TT. When placing Se atoms at the outer positions of the π-core, mPh4F-TS shows the most red-shifted absorption and compact molecular stacking. The PM6 : mPh4F-TS devices exhibit excellent absorption, high charge carrier mobility, and reduced energy loss. Consequently, PM6 : mPh4F-TS achieves more balanced photovoltaic parameters and yields an efficiency of 18.05 %, which highlights that precisely manipulating selenium functionalization is a practicable way toward high-efficiency OSCs.

17.
Comput Methods Programs Biomed ; 225: 107078, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36037604

RESUMO

BACKGROUND AND OBJECTIVE: Elderly patients treated for femoral shaft fractures have a higher risk of hip fracture. We hypothesized that intramedullary nails protecting the femoral neck can improve mechanical strength and reduce the risk of subsequent hip fracture. This study aims to analyze the biomechanical stability using intramedullary nails with or without femoral neck protection through finite element analysis. METHODS: Thirty finite element models (FEMs) were established, including five different conditions of femoral shaft fracture: Fracture healing, Proximal fractures (Transverse and oblique), Distal fractures (Transverse and oblique), and five different fixation methods. Femoral neck protection groups: cephalomedullary nail (CN), reconstruction nail (RN); No femoral neck protection groups: type-1 of antegrade intramedullary nail (AIN-1), type-2 of antegrade intramedullary nail (AIN-2), and retrograde intramedullary nail (RIN). The maximum stress of bone and internal fixation in the femoral neck region for all type of fixation were calculated to evaluate the biomechanical stability. RESULTS: Maximum equivalent stress values of bone in the femoral neck region for five different conditions of femoral shaft fracture: AIN-2 (77.23 MPa) >RIN (77.15 MPa) > AIN-1 (76.71 MPa) > CN (60.74 MPa) > RN (57.66 MPa) for the fracture healing; RIN (80.05 MPa) > AIN-1 (79.15 MPa) > AIN-2(78.77 MPa) > RN (65.16 MPa) > CN (65.03 MPa) for the proximal transverse fracture; RIN (80.10 MPa) > AIN-2 (79.36 MPa) > AIN-1 (79.18 MPa) > RN (65.09 MPa) > CN (64.96 MPa) for the proximal oblique fracture; RIN (80.24 MPa) > AIN-2 (79.68 MPa) > AIN-1 (79.33 MPa) > CN (65.02 MPa) > RN (64.76 MPa) for the distal transverse fracture; RIN (80.23 MPa) > AIN-2 (79.61 MPa) > AIN-1 (79.35 MPa) > CN (65.06 MPa) > RN (64.76 MPa) for the distal oblique fracture. Maximum equivalent stress of internal fixation in the femoral neck region is greater than the maximum stress of bone and avoids stress concentration of bone for the femoral neck protection groups (CN and RN). CONCLUSIONS: Intramedullary nails with femoral neck protection in the treatment of femoral shaft fractures improve mechanical strength and prevent secondary hip fractures and decrease the overall risk of reoperation postoperatively.


Assuntos
Fraturas do Fêmur , Fixação Intramedular de Fraturas , Fraturas do Quadril , Idoso , Pinos Ortopédicos , Fraturas do Fêmur/cirurgia , Fixação Intramedular de Fraturas/efeitos adversos , Fixação Intramedular de Fraturas/métodos , Consolidação da Fratura , Humanos
18.
J Phys Chem A ; 126(27): 4517-4527, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35767684

RESUMO

We extend our previous work (Luo, S.; Thachuk, M. J. Phys. Chem. A 2021, 125, 64866497) on determining conservative potentials for lattice-like, coarse-grain (CG) mapping schemes to the case where the boundaries between different spatial regions are not sharply defined but are fuzzy. In other words, the system is divided into interpenetrating "subcells" such that atomistic particles continuously change their memberships as they move through space. This is done by using fuzzy switching functions to define overlapping regions between subcells with fractional particle occupations. In this case, a full mass matrix is required to describe the system, and its off-diagonal elements are nonzero and contribute to the CG potential. As the overlapping region increases in size, we observe the mass distribution transitions from a discrete spectrum, through an intermediate state, and finally to a continuous Gaussian-like function. We interpret this as a quantitative measure for signaling when a continuum-theory description of the system is appropriate. Nonzero correlations among all CG variables are calculated and are found to depend strongly on the degree of overlap. In particular, those for the diagonal mass elements decrease in magnitude, and there exists a specific value of the overlap for which the correlations are zero. Other correlations are strong only when the overlap is quite large, so there is a trade-off between the complexity of the interactions in the system and the degree of fuzziness between the subcells. However, if the number of particles in a subcell is large enough and the overlap is moderate, then the CG potential is found to be well-approximated by a generalized quadratic function. These results demonstrate the transition between atomistic and continuum resolutions in a system and have implications for designing CG schemes with mixed atomistic and continuum character.

19.
Biomed Res Int ; 2022: 3667891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647189

RESUMO

Objective: To analyze the impact of femoral neck cortical bone defect induced by core decompression on postoperative biomechanical stability using the finite element method. Methods: Five finite element models (FEMs) were established, including the standard operating model and four models of cortical bone defects at different portions of the femoral neck (anterior, posterior, superior, and inferior). The maximum stress of the proximal femur was evaluated during normal walking and walking downstairs. Results: Under both weight-bearing conditions, the maximum stress values of the five models were as follows: femoral neck (inferior) > femoral neck (superior) > femoral neck (posterior) > femoral neck (anterior) > standard operation. Stress concentration occurred in the areas of femoral neck cortical bone defect. Under normal walking, the maximum stress of four bone defect models and its increased percentage comparing the standard operation were as follows: anterior (17.17%), posterior (39.02%), superior (57.48%), and inferior (76.42%). The maximum stress was less than the cortical bone yield strength under normal walking conditions. Under walking downstairs, the maximum stress of four bone defect models and its increased percentage comparing the standard operation under normal walking were as follows: anterior (36.75%), posterior (67.82%), superior (83.31%), and inferior (103.65%). Under walking downstairs conditions, the maximum stress of bone defect models (anterior, posterior, and superior) was less than the yield strength of cortical bone, while the maximum stress of bone defect model (inferior) excessed yield strength value. Conclusions: The femoral neck cortical bone defect induced by core decompression can carry out normal walking after surgery. To avoid an increased risk of fracture after surgery, walking downstairs should be avoided when the cortical bone defect is inferior to the femoral neck except for the other three positions (anterior, posterior, and superior).


Assuntos
Colo do Fêmur , Fêmur , Osso Cortical/cirurgia , Descompressão , Fêmur/cirurgia , Colo do Fêmur/cirurgia , Análise de Elementos Finitos
20.
Front Cardiovasc Med ; 9: 837142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498024

RESUMO

Intrauterine hypoxia is a common complication during pregnancy and could increase the risk of cardiovascular disease in offspring. However, the underlying mechanism is controversial. Memantine, an NMDA receptor antagonist, is reported to be a potential cardio-protective agent. We hypothesized that antenatal memantine treatment could prevent heart injury in neonatal offspring exposed to intrauterine hypoxia. Pregnant rats were exposed to gestational hypoxia or antenatal memantine treatment during late pregnancy. Newborns were then sacrificed to assess multiple parameters. The results revealed that Intrauterine hypoxia resulted in declining birth weight, heart weight, and an abnormally high heart weight/birth weight ratio. Furthermore, intrauterine hypoxia caused mitochondrial structural, functional abnormalities and decreased expression of DRP1, and upregulation of NMDAR1 in vivo. Antenatal memantine treatment,an NMDARs antagonist, improved these changes. In vitro, hypoxia increased the glutamate concentration and expression of NMDAR1. NMDAR activation may lead to similar changes in mitochondrial function, structure, and downregulation of DRP1 in vitro. Pharmacological blockade of NMDARs by the non-competitive NMDA antagonist MK-801 or knockdown of the glutamate receptor NR1 significantly attenuated the increased mitochondrial reactive oxygen species and calcium overload-induced by hypoxia exposure. These facts suggest that memantine could provide a novel and promising treatment for clinical use in intrauterine hypoxia during pregnancy to protect the cardiac mitochondrial function in the offspring. To our best knowledge, our research is the first study that shows intrauterine hypoxia can excessively activate cardiac NMDARs and thus cause mitochondrial dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...